skip to main content


Search for: All records

Creators/Authors contains: "Stanislaus, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the context of developing novel fuel cell catalysts, we have successfully synthesized in high yields not only ultrathin nanowires with compositions of Pt1Ru1 and Pt3Ru1 but also more complex spoke-like dendritic clusters of Pt1Ru1 and Pt1Ru9 in ambient pressure under relatively straightforward, solution-based reaction conditions, mediated by either CTAB (cetyltrimethylammonium bromide) or oleylamine (OAm), respectively. EXAFS analysis allowed us to determine the homogeneity of as-prepared samples. Based on this analysis, only the Pt3Ru1 sample was found to be relatively homogeneous. All of the other samples yielded results, suggestive of a tendency for the elements to segregate into clusters of ‘like’ atoms. We have also collected complementary HRTEM EDS mapping data, which support the idea of a segregation of elements consistent with the EXAFS results. We attribute the differences in the observed morphologies and elemental distributions within as-prepared samples to the presence of varying surfactants and heating environments, employed in these reactions. Methanol oxidation reaction (MOR) measurements indicated a correlation of specific activity (SA) values not only with intrinsic chemical composition and degree of alloying but also with the reaction process used to generate the nanoscale motifs in the first place. Specifically, the observed performance of samples tested decreased as a function of chemical composition (surfactant used in their synthesis), as follows: Pt3Ru1 (CTAB) > Pt1Ru1 (CTAB) > Pt1Ru1 (OAm) > Pt1Ru9 (OAm). 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Abstract Ultrathin Pt nanowires possess high activity for various electrocatalytic applications. However, little work has focused on understanding their growth mechanisms. Herein, we utilize a combination of time-dependent, ex situ transmission electron microscopy (TEM) and small angle x-ray scattering (SAXS) techniques to observe the growth process in addition to associated surfactant-based interactions. TEM images indicate that initially nanoparticles are formed within 30 s; these small ‘seed’ particles quickly elongate to form ultrathin nanowires after 2 min. These motifs remain relatively unchanged in size and shape up to 480 min of reaction. Complementary SAXS data suggests that the initial nanoparticles, which are coated by a surfactant bilayer, arrange into a bcc superlattice. With increasing reaction time, the bcc lattice disappears as the nanoparticles grow into nanowires, which then self-assemble into a columnar hexagonal structure in which the individual nanowires are covered by a CTAB monolayer. The hexagonal structure eventually degrades, thereby leading to the formation of lamellar stacking phases comprised of surfactant bilayers. To the best of our knowledge, this is the first time that SAXS has been used to monitor the growth and self-assembly of Pt nanowires. These insights can be used to better understand and rationally control the formation of anisotropic motifs of other metallic nanostructures. 
    more » « less
  3. Using a variety of synthetic protocols including hydrothermal and microwave-assisted methods, the morphology of as-prepared magnetite has been reliably altered as a means of probing the effect of facet variations upon the resulting electrochemical processes measured. In particular, motifs of magnetite, measuring ∼100 to 200 nm in diameter, were variously prepared in the form of cubes, spheres, octahedra, and plates, thereby affording the opportunity to preferentially expose either (111), (220), or (100) planes, depending on the geometry in question. We deliberately prepared these samples, characterized using XRD and SEM, in the absence of a carbonaceous surfactant to enhance their intrinsic electrochemical function. Herein, we present a direct electrochemical comparison of specifically modified shape morphologies possessing 3 different facets and their impact as electrode materials for Li-ion batteries. Our overall data suggest that the shapes exhibiting the largest deliverable capacities at various current densities incorporated the highest surface energy facets, such as exposed (220) planes in this study. The faceted nature of different morphologies highlighted a trend in electrochemistry of (220) > (111) > (100); moreover, the degree of aggregation and polydispersity in prepared samples were found to play key roles as well. 
    more » « less
  4. We have not only analyzed the performance of perovskite oxides as support media for the methanol oxidation reaction (MOR) but also examined the impact and significance of various reaction parameters on their synthesis. Specifically, we have generated (a) La 2 NiMnO 6 , LaMnO 3 , and LaNiO 3 nanocubes with average sizes of ∼200 nm, in addition to a series of La 2 NiMnO 6 (b) nanocubes possessing average sizes of ∼70 and 400 nm and (c) anisotropic nanorods characterized by average diameters of 40–50 nm. All of these samples, when used as supports for Pt nanoparticles, exhibited activities which were at least twice that measured for Pt/C. We have investigated and correlated the effect of varying perovskite (i) composition, (ii) size, and (iii) morphology upon the measured MOR activity. (i) The Ni-containing perovskites yielded generally higher performance metrics than LaMnO 3 alone, suggesting that the presence of Ni is favorable for MOR, a finding supported by a shift in the Pt d -band in XPS. (ii) MOR activity is enhanced as the perovskite size increases in magnitude, suggesting that a growth in the perovskite particle size enables favorable, synergistic metal–support interactions. (iii) A comparison of the nanorods and nanocubes of a similar diameter implied that the one-dimensional morphology achieved a greater activity, a finding which can be attributed not only to the anisotropic structure but also to a desirable surface structure. Overall, these data yield key insights into the tuning of metal–support interactions via rational control over the composition, size, and morphology of the underlying catalyst support. 
    more » « less
  5. Abstract

    We have successfully synthesized ultrathin nanowires of pure Pt, Pt99Ni1, Pt9Ni1, and Pt7Ni3using a modified room‐temperature soft‐template method. Analysis of both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR) results found that the Pt7Ni3samples yielded the best performance with specific activities of 0.36 and 0.34 mA/cm2respectively. Additionally, formic acid oxidation reaction (FAOR) tests noted that both Pt and PtNi nanowires oxidize small organic molecules (SOMs) via an indirect pathway. CO oxidation data suggests little measurable performance without any pre‐reduction treatment; however, after annealing in H2, we detected significantly improved CO2formation for both Pt9Ni1and Pt7Ni3motifs. These observations highlight the importance of pre‐treating these nanowires under a reducing atmosphere to enhance their performance for CO oxidation. To explain these findings, we collected extended x‐ray adsorption fine structure (EXAFS) spectroscopy data, consistent with the presence of partial alloying with a tendency for Pt and Ni to segregate, thereby implying the formation of a Pt‐rich shell coupled with a Ni‐rich core. We also observed that the degree of alloying within the nanowires increased after annealing in a reducing atmosphere, a finding deduced through analysis of the coordination numbers and calculations of Cowley's short range order parameters.

     
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    We synthesized and subsequently rationalized the formation of a series of 3D hierarchical metal oxide spherical motifs. Specifically, we varied the chemical composition within a family of ATiO3 (wherein “A” = Ca, Sr, and Ba) perovskites, using a two-step, surfactant-free synthesis procedure to generate structures with average diameters of ~3 microns. In terms of demonstrating the practicality of these perovskite materials, we have explored their use as supports for the methanol oxidation reaction (MOR) as a function of their size, morphology, and chemical composition. The MOR activity of our target systems was found to increase with decreasing ionic radius of the “A” site cation, in order of Pt/CaTiO3 (CTO) > Pt/SrTiO3 (STO) > Pt/BaTiO3 (BTO). With respect to morphology, we observed an MOR enhancement of our 3D spherical motifs, as compared with either ultra-small or cubic control samples. Moreover, the Pt/CTO sample yielded not only improved mass and specific activity values but also a greater stability and durability, as compared with both commercial TiO2 nanoparticle standards and precursor TiO2 templates. 
    more » « less